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Modulus Reinforcement in Elastomer Composites. 
I. Inorganic Fillers 

I<. D. ZIEGEL* and A. ROMANOV, Polymer Institute of the Slovak 
Academy of Sciences, Dzibravskd cesta, Bratislava, Czechoslovakia. 

synopsis 

The effect of various inorganic fillers on the storage modulus of four elastomers was 
determined experimentally. Results are interpreted using the Kerner equation, modi- 
fied to include a parameter, B, in the volume fraction terms. This factor combines 
particle size and specific interaction effects, and in theory can be evaluated from energy 
dissipation measurements. 

INTRODUCTION 

In  developing the final properties of an elastomer-based product, such as 
strength, modulus, cost, color, durability, etc., the filler plays a most im- 
portant role. A wide variety of inorganic and organic materials have long 
been available, most familiar, of course, is carbon black, and these have been 
characterized quite extensively in terms of particle size, structure, density, 
and porosity. What is harder to characterize is the property often termed 
polymer-filler interaction. This term broadly includes the interfacial 
forces between the solid and elastomer, the orientation of the elastomer in 
the immediate vicinity of the filler surface, the formation of an “interphase” 
the properties and dimensions of which affect the composite properties, 
nucleation of crystallization, and other physicochemical phenomena. 

Without a knowledge of this interaction, one may nevertheless make per- 
fectly utilitarian selections of fillers for specific polymers. The usual tech- 
nique is to blend various fillers, in varying amounts, with the elastomer and 
prepare vulcanizatcs for mechanical testing. The technique is laborious 
and time consuming. For some end uses, for example, very high concen- 
trations of filler may be desirable from a cost and density viewpoint, and 
the high filler concentrations can often interfere with the usual vulcaniza- 
tion mechanism either by altering the chemical cnvironment, participating 
in side reactions, or simply by removing active ingredients from the matrix 
elastomer by adsorption onto the filler surface. Furthermore, many ex- 
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perimental polymers with great commercial potential are never properly 
evaluated simply because the curing chemistry has not been perfected. 

In  this paper we propose and evaluate a simple tzchnique for determining 
quantitatively the poll mer-filler interaction parameter, using gum stock 
elastomers, and only limited (low) concentrations of filler, this parameter 
possessing utility in predicting, a priori, the modulus of composites based 
on elastomer matrixes with inorganic fillers. 

THEORY 

Attempts to predict the modulus of elasticity a t  low extension, E‘, from 
filler content have included thc well-known Guth‘ equation based on ex- 
tensions of hydrodynamic arguments, a sedimentation volume treatment by 
Eilers,2 the Sato-Furukawa a p p r ~ a c h , ~  and geometric theories by Nielsen4 
and by 201-11.~ Each of the derived equations appears to  satisfactorily 
describe the data at least of the individual author. h’one appears to be 
universally applicable, which is not surprising since none really approaches 
reinforcement within thc admittedly complex mathematical framework of 
modern micromechanics. Only the equations of I<erncr,6 which themselves 
are extensions of the original work of Goodier’ on a suspended single grain of 
material in a rubbery matrix, appear to be theoretically on very firm ground. 
The Kerner equation pertaining to modulus reinforcement in simple tension 
is 

(1) 
where E’, is the modulus of the composite, v is the Poisson ratio of the matrix, 
GIF is shear modulus of filler (real part), Go is thc shear modulus of unfilled 
matrix (real part), and pF is the volume fraction of the filler. Unfor- 
tunately, however, this equation does not describe the modulus of com- 
posites as a function of the volume loading of filler for any of the systems 
tested. Its failure to fit the data has probably been the main driving force 
for the derivations of many of the equations cited above, which, though 
empirical, follow in some cases more closely the variation of E’ with pF. 

Unwilling to totally abandon the Hcrner equation simply because the 
data did not comply with it, we examined Iierner’s approach in light of 
some current theories of composite materials. Thc only discrepancy 
secms to  rest in the volume fraction of filler, pF. If one accepts the notion 
of a tightly adhering interphase as a result of spccific physicochomical inter- 
actions betwcen the filler and the polymer, then the truc volumc fraction of 
immobilized material, pe, will be greater than p F  by some factor which could 
be included directly into Kerner’s formalism. 

In  a previous contribution concerning energy dissipation,8 a definition of 
pe was employed, i.e., 

p e  = pF(1 + A R / R o ) ~  (2) 
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Fig. 1. E', E", and tan 6 as a function of volume loading of filler: Neoprene with 
Bayrites, ( 0 ) l l O  Hr; (0)  35 He; (0)  11 Hz; (A) 3.5 He; all at 3OOC. 

wherc the term AR/Ro is the relative increase in particle diameter for spheres 
and can be estimated either from viscosity measurements of dispersions of 
the filler particles in fluid polymers (this is only practical when low mo- 
lecular weight analogs of the elastomer can be prepared) or from comparison 
of the loss moduli E" of filled and unfilled specimens, using the equation 

E"o/E", = 1 - vF(1 + A R / R o ) ~ .  (3) 
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Fig. 2. E‘,E”, and tan 6 as a function of volume loading of filler: urethane with micro- 
beads, (0) 110 He; (0) 35 He; (0 )  11 He; (A) 3.5 Hz. 

Equation (3) was derived from the concept of “strain magnification,” 
meaning the increase in local strain amplitude in the matrix caused by the 
inextensibility of the filler particles and their associated interphase of im- 
mobilized polymer, and was shown to be valid at least for one specific 
polyurethane elastomcr using glass microbeads as filler particles. An ex- 
tension of the strain magnification concept into modulus reinforcement was 
not attempted because i t  fails to take into account the role of the filler 
modulus which is significant when dealing with E’ but negligible when con- 
sidering energy dissipation E”. 

The possibility that the Ihrner equation could be “irnprovcd” by modify- 
ing the volume fraction term was then explored. Hence for qF we sub- 
stitute qFB, where B rcprcsents the term (1 + AR/Ro) 3. Equation (1) , for 
rubbery matrices where v = 0.5, and GF >> Go, becomes 

E’,/E’o = (1 + 1.5 ~ p p B ) / ( l  - c ~ F B ) .  (4) 
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Fig. 3. Variation of apparent B values from eq. (3) with volume loading of filler: 
with (0) HiSil and (0)  microbeads. 
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Viton 

Somewhat similar “adjustments” have been proposed by Lewis and Niel- 
senlo and by Ilavsky et al.“ 

A comparison with eq. (3) predicts that the loss tangent of a composite 
will decrease with increasing filler loading according to 

(5) tan 6, = tan ti0/(1 + 1.5 (pFB), 

a situation that has becn o b ~ e r v e d l ~ * ’ ~  experimentally in many composites. 

EXPERIMENTAL 

Four gum elastomrrs, three of them commercial products from Elastomcr 
Chemicals Dcpartment of E. I. du Pont de Nemours and Co., one an ex- 
perimental product, werc employed. Thcse werc: Neoprene AD30, a poly- 
chloroprene elastomer; Viton AHV, a high-viscosity version of the fluo- 
rinated polymer; Nordel1145, a copolymer of ethylene and propylenc; and 
ECD 2957, poly(ether urethane). 
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Fig. 4. Variation of apparent B values from eq. (3) with volume loading of filler: Ure- 
thane with (0) HiSil and (0) microbeads. 

For fillers we used: HiSil 233, a “semireinforcing” powdered silica ob- 
tained from Cabot Co., density = 1.95; glass beads in the 20- to  60-p  
particle size range obtained from Microbeads, Inc., density 2.5; and 
barium sulfate powder, “Bayrites,” density 4.35. 

Sample preparation was accomplished by mixing the filler and elastomer 
on a two-roll rubber mill and pressing slabs of approximately 0.100 in. in 
thickness, a t  100°C to 120°C in a platen press. Attempts were made to 
obtain qF values of 0.05, 0.1, 0.2, 0.3, and 0.5. In  some cases, however, 
the higher concentration could not be achieved bccause of crumbling of the 
elastomer-filler mixture. In  one case, Neoprene with HiSil, the polymer 
darkened and toughened during mill mixing, making specimen preparation 
impossible. Final specimcn prcparation was requircd to  reduce the size 
and thickness of the sample to approximately 2.5 cm X 1 em X 0.1 cm 
and was accornplishcd by reheating in a small laboratory press. Dynamic 
tcsting of the samplcs was accomplished with a Vibron AIodel DDV-11, 
Toyo-Measuring Instrumcnts Co., Ltd., Tokyo, Japan. Data wcre ob- 
tained a t  30°C (well into the rubbery rcgion for cach elastomer tcsted) and 
a t  110,35,11, and 3.5 Hz. 

Typical curves showing the variation of E‘ and E” and loss tangent with 
increasing filler concentration also as a function of test frequency are shown 
in Figures 1 and 2. Values of E’, and E“, were obtained by extrapolation 
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Fig. 5. Variation of reduced storage modulus with filler concentration: Urethane with 
(0 )  HiSil and (63) microbeads. Solid lines are from eq. (4). 

to the qF = 0 axis, since direct evaluation on the Vibron was impossible 
owing to the very low stiffness of the unfilled elastomers. 

RESULTS AND DISCUSSION 

Using the E"va1ues obtained experimentally and eq. (3) , a direct estimate 
of the interaction parameter B was made. It was immediately apparent 
that eq. (3), though applicable for a specific system of glass beads in a vibra- 
tion-damping polyurethane,8 and apparently for glass beads in Viton, did 
not posess any degree of universality. The B values generally decreased 
with increasing concentration, as shown in Figures 3 and 4. Hence, use 
of the strain magnification estimate of B to substitute into the modified 
Kerner equation was not possible. Instead, we used a curve-fitting ap- 
proximation technique to obtain interaction parameter values directly from 
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Fig. 6. Variation of reduced storage modulus with filler concentration: 
(0 )  HiSil and (63) microbeads. Solid lines are from eq (4). 

Nordel with 

reduced storage modulus data. The “goodness” of fit is amply illustrated 
in Figures 5, 6 ,  7, and 8. 

Thus, the modified Merner equation appears to describe a variety of 
elastomers with various fillers provided an interaction parameter correction 
is applied to the volume fraction term. Because of the sensitivity of this 
technique, it would appear that accurate estimates of the B factor can be 
made using only a few concentrations of filler, especially a t  the low loading 
level, perhaps up to 20 vol-’%. It is, in fact, important to avoid high- 
volume loadings because of the existence of a critical volume fraction cpc, 

above which not all the filler particles can be wetted by the elastomer 
matrix. This critical volume fraction is related to the parameter B. 
When eq. (3) is applicable, cpc is simply the reciprocal of B .  A value of 
B of 6.5, for example, as observed with HiSil in Nordel, would predict a cpc of 
approximately 0.15, and it was indeed observed that for this polymer- 
filler combination only a maximum of 10 ~ 0 1 - 7 ~  filler was experimentally 
feasible. 
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Fig. 7. Variation of reduced storage modulus with filler concentration: Neoprene with 
(€3) microbeads and (A) Bayrites. Solid lines are from eq (4). 

Examining now the failure of eq. (3) to describe the energy dissipation 
p.roperties of these composites, we recognize the rather drastic assumptions 
made in the development of the original theory. It was demonstratedg 
that the average strain magnification (disregarding the B factor) is indeed 
linear with respect to pF, i.e., 

d e o  = 11 - pF1-l 

while the maximum magnification ratio is equal to [l - ~ / ’ ~ ] - l ,  where ec 
represents the strain, AL/Lo, in the matrix of a filled polymer, and B~ that 
in the pure elastomer. In deriving the ratio of energy dissipated in filled 
and unfilled polymers, the important equation is 

E”JE”o = (eC2/eo2) (1 - ( P F ) .  (6) 

From the assumption that (eC2/eO2) = (ec/eo)2, eq. (3) was derived, with the 
admission that this was only a convenient simplification based on the ab- 
sence of any more detailed theory. 
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Fig. 8. Variation of reduced storage modulus with filler concentration: Viton with 
(0)  HiSi and (8) microbeads. Solid lines are from eq. (4). 

It is possible, then, that the energy dissipation ratio can be more ade- 
quately described by an expression where the power of qF, or q F B ,  is less 
than unity. A convenient empirical equation based on eq. (3) is 

E”JE“0 = [I - ( ( ~ F B ) ~ ] - ’ .  (7) 
A plot of the logarithm of 1 - E”O/E”c versus the logarithm of qF yields the 
exponent n as slope, and the interaction parameter B can be evaluated from 
the intercept. Figures 9, 10, and 11 reveal linearity in the log-log plots. 
The Viton-HiSil system showed considerable nonlinearity. A summary 
of the B values and the exponent n is made in Table I. in comparison with 
those B values obtained by the modified Kerner equation(4). 

CONCLUSIONS 

The Kerncr equation, modified to include a volume correction term, has 
been shown to accurately describe the variation of storage modulus E’, 
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Fig. 9. Plot of logarithm of eq. (7): Urethane with (0) microbeads and (0) HiSil. 

with filler concentration. The correction, or polymer-filler interaction 
term B,  obtained from curve fitting is of fundamental importance in select- 
ing filler8 for various commercial end uses. 

An equation derived in earlier work to describe the energy dissipation of 
composites has been modified to allow for variable power dependence of the 

TABLE I 
Interaction Parameter and Equation (7) Exponent 

B value Exponent, 
Kerner n 

Filler Polymer eq. Eq. (7) Eq. (7) 

HiSil urethane 
Nordel 
Viton 

Microbeads urethane 
Nordel 
Neoprene 
Viton 

Bay rites Neoprene 

3.15 
6.5 
3.15 

1.6 
3.2 
1.2 
1.1 
1.1 

3.5 
6.1 

b 

2.2 
4.2 

.91 
1.78 
.91 

.52 

.52 
b 

.85 

.65 

.60 
1 .oa  

.60 

a Equation (3). 
b Equation (7) not applicable. 
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Fig. 10. Plot of logarithm of eq (7): Nordel with (0) microbeads and (0) HiSil. 

LY, 
Fig. 11. Plot of logarithm of eq. (7): Neoprene with (A] Bayrites and (0) micro- 

beads. 
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volume fraction term. Using this empirical equation, good agreement in B 
values is obtained with those derived from the modified Iierner equation. 
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